Questions? We're here to help. 1 (800) 489-7800

Medical Physics

Medical Physics

Message from the Chief

Dr. Fontenot Full ShotMedical physicists are highly-trained medical professionals who are uniquely positioned to drive clinic-wide improvements in quality and safety of radiation therapy and diagnostic imaging procedures. As a part of its commitment to high-quality cancer care in our community, the Cancer Center commits significant resources to its medical physics group.

Our team consists of 10 board-certified medical physicists who support the Center through clinical service, research, and education. Our objectives are to provide excellent clinical care, to conduct research that improves treatment outcomes of our patients, and to train the next generation of medical physicists.

Since 1980, the Center has collaborated with Louisiana State University (LSU) to operate a nationally-recognized graduate education program in medical physics, known as the Dr. Charles M. Smith Medical Physics Program. The program is the only one of its kind in Louisiana and only one of 60 accredited programs in the nation. In 2009, the Center established an accredited medical physics residency training program that has grown to become one of the largest in the nation. The educational programs – and institutional partnerships that have been forged therein – have created an academic environment that is truly unique in the community setting and carries tremendous benefits to our patients.

The Center’s medical physics program has attracted research funding from federal agencies and radiation oncology manufacturers that, in turn, make cutting-edge technologies and techniques available to our patients. Our research program emphasizes patient-oriented innovations that are routinely published in leading scientific journals. The physics team is professionally active and several serve on distinguished professional and scientific governing bodies. Lastly, our support of educational programs keeps us engaged in a continuous process of critical evaluation and self-improvement. These qualities result in a highly productive and dynamic medical physics group that is unparalleled in the Gulf South.

I encourage you to learn more about our program through our website and that of our academic partners at LSU.

Jonas D Fontenot, PhD
Chief Executive Officer and Dr. Charles M. Smith Chief of Physics

Medical Physicists



  • 6 Elekta Infinity and 1 Versa HD radiotherapy accelerators with MLC and on-board imaging (6, 10, 15 MV x-ray and 7, 9, 10, 11, 13, 16, and 20 MeV electron beams) and volumetric modulated arc therapy.


  • 1 GE Lightspeed RT CT Simulator (4D Advantage Windows)
  • 5 GE Discovery ST PET-CT
  • 1 GammaKnife Icon



  • Philips ADAC Pinnacle systems (Clinical)
  • Raysearch Raystation systems (Research)
  • MIM Maestro
  • Mobius3D/MobiusFX treatment verification software
  • MU Check Software


  • 3 Elekta Nucletron HDR Systems
  • MammoSite and SAVI (breast)
  • Varian VariSeed LDR planning system (prostate seeds)
  • Sr-90 ophthalmic applicator
  • I-125 eye plaques for ocular melanoma


  • 3D beam scanning system (Welhoffer/Scanditronix)
  • 2D beam scanning systems (Scanditronix, TomoDose, CRS)
  • Anthropomorphic “Fred” torso phantom
  • Cylindrical water phantoms with 1D scanning
  • MicroSTARii OSLF system
  • Radiographic film scanning system (Vidar scanner, RIT, and TomoScan software)
  • Tissue equivalent phantoms (rectangular, cylindrical, and 4D)
  • Sun Nuclear (1D (Profiler) and 2D (MapCheck) diode arrays


  • Treatment planning room
  • Block and mold room


All members of the academic physics group at MBPCC hold adjunct faculty appointments at LSU and are provided with full access to university resources, including:
The LSU university library

The 1.3 GeV electron storage ring (200 mA) has multiple beam lines of varying light energy. Two beam lines, produced by a superconducting wiggler magnet, allow medical radiological research using x-ray beams up to 40 keV.

The Radiation Detector Development (RDD) Laboratory currently provides 480 sq. ft. of research space and is located in the renovated Nicholson Hall (which houses the Department of Physics and Astronomy); the lab occupies an additional 300 sq. ft. of lab space in the Nuclear Science building, which is rated for full use of radioactive materials. The RDD Lab has equipment and materials for design, fabrication, testing, and analysis of prototype detector systems. This includes: oscilloscopes; PC-based multi-channel analyzer; UNIX workstation for simulations, data processing and analysis; electronics prototyping equipment; dose calibrator; sealed long-lived radiation sources and collimation/shielding materials; general-purpose collection of nuclear instrumentation modular electronics; general-purpose collection of scintillation crystals and photomultiplier tubes (PMT); and imaging phantoms. Some project-specific items that are available include a light-tight (“black”) box, a selection of wavelength-shifting optical fibers (both individual fibers and assembled ribbons), three 5″x5″x1″ NaI(Tl) scintillation crystals, a multi-channel PMT, green-enhanced-response PMTs, custom-built detector assembly fixtures, and multi-channel DAQ cards.

Skyscan 1074 instrument with 37 μm resolution, 3 cm field of view and variable beam energy. Image reconstruction software has multiple capabilities and can run on a distributed computing environment.

The Department of Physics and Astronomy provides fully-staffed machine and electronics shops. These shops provide in-house fabrication facilities. In addition, a “student” machine shop is also available for faculty and student use. Other resources include a drafting shop operated by the College of Basic Sciences.

The School of Veterinary Medicine supports radiological facilities for animals. Diagnostic facilities include x-ray fluoroscopy and CT scanning, and access to a PET/CT. MRI capability is anticipated in the near future. A small animal therapy facility includes a Varian Clinac 600C with a 52-leaf MLC and the Pinnacle treatment planning system.

  • Various multi-teraflop systems (SuperMic and DeepBayou) operated by the Center for Computation and Technology
  • The Medical Physics and Health Physics Program has several high-performance multi-processor Unix workstations for research and instructional purposes with the following software:
  • Philips ADAC Pinnacle3 research treatment planning system
  • TomoTherapy research treatment planning system
  • EGSnrc, MCNP (various versions), and GEANT Monte Carlo codes
  • A collection of deterministic neutron, photon and charge particle transport codes, including cross section processing routines
  • Fortran, C, C++ compilers with high-performance multi-threading extension
  • In-house software for advanced aerosol transport computations, external beam photon transport calculations, and brachytherapy seed identification and dosimetry.

The Nuclear Science Building serves primarily as a laboratory research and teaching facility. In addition, it gives housing to the LSU campus Radiation Safety Office. The building houses:

  • Six research laboratories equipped with fume hoods, sinks, counters, storage space. All are all acid-proof and are rated for radiochemistry, radiobiology, nano-sized aerosol, and generic radiation research. The aerosol laboratory houses a 1.8 x 1.5 x 0.6 m3 environmental chamber equipped with a real-time laser multi-channel aerosol spectrometer and nano-particle nebulizer. This lab supports experimental and computational study of how aerosols transport in confined spaces.
  • Multiple irradiation facilities (high-intensity radio-isotopic source irradiators having a maximum dose rate of 5000 R/min include): self-contained Co-60 irradiator, pool-type Co-60 irradiator, and Eberline Cs-137 calibrator/irradiator. Neutron facilities include: a subcritical assembly for neutron physics experiments and Cf-252 sources (total isotope mass of about 60 micro-grams) stored in two separate neutron irradiators (scalar thermal neutron flux of about 5 x 106 n/cm2/s).
  • Multiple radiation detection systems: HPGe detectors, NaI(Tl) detectors, a Si(Li) detector, liquid scintillation detector, etc. Counting laboratories maintain a cross-calibration schedule with the State of Louisiana Radiation Laboratory under the Louisiana Department of Environmental Quality, using NIST traceable standards.

Graduate Training

We offer comprehensive training in the field of medical physics, including the Master of Science Degree, the Doctor of Philosophy Degree, Post-Doctoral Certificate Degrees, and Post-Doctoral Research Fellowships. The training program is jointly run by a partnership between Mary Bird Perkins Cancer Center and Louisiana State University. Degree programs are accredited and nationally recognized. The overarching objective of our training program is to provide outstanding opportunities for our trainees to prepare for successful careers in medical physics. Careers in medical physics may include patient care, research, education or a combination of these activities. The amount and type of training is typically tailored to best match the trainees’ career objectives. The table below lists the training programs that we recommend for several typical trainee objectives. 

Click here to see why one student chose our Medical Physics Program.

Click here for detailed descriptions of our graduate degree programs, sample curricula and more information about postdoctoral training opportunities,

Residency Training

Medical Physics

Using a collaborative approach, Mary Bird Perkins formed a medical physics consortium with multiple affiliate sites, including Willis-Knighton Cancer Center in Shreveport and the University of Mississippi Medical Center in Jackson, MS. This allowed for the expansion of residency training opportunities and resources. In conjunction with its affiliates, Mary Bird Perkins now has one of the largest radiation oncology physics residency training program in the United States.

For more information on our residency program, click the below items:

Program Objectives
The CAMPEP-accredited Mary Bird Perkins Cancer Center (MBPCC) Radiation Oncology Physics Residency Training Program provides training in clinical radiation oncology physics in preparation for American Board of Radiology (ABR) certification and independent practice in clinical medical physics in radiation oncology. The Program covers the majority of topics found in AAPM Reports 90 and 249, through a combination of supervised training and independent work. After successful completion of the program, the resident will have covered the essential curricula for the board certification examination for radiation oncology physics.

Residents are assigned to regular full-time clinical duties and are actively involved in patient care. Training specific to daily activities is divided into categories of machine quality assurance (QA), dosimetry, HDR brachytherapy, LDR brachytherapy, external beam treatment planning, Stereotactic Radiosurgery (SRS), and motion management services. Training also includes non-daily activities such as acceptance testing, commissioning, QA of various major clinical systems (linac, brachytherapy, treatment planning systems, etc.), and radiation safety/regulatory issues, which are accomplished through a series of special projects.

Program Consortium / Hub and Spoke Model
MBPCC has reached agreements with two regional cancer centers to serve as partner programs in the residency program. These affiliate sites were chosen based on their interest in the program, and sufficient clinical staff and resources to effectively train residents. Partner locations include Willis-Knighton Cancer Center (Shreveport, LA) and the University of Mississippi Medical Center (Jackson, MS). These institutions and MBPCC represent a network of for-profit, non-profit, academic, and community entities. Each site has a local program director who is also a member of the Program Committee.  This type of collaborative endeavor enables us to train additional residents, and provide access to more special procedures than are available at any one site.

Medical physicists and administration at all locations have shown a great deal of support in developing these partnerships.  The partner sites began resident training in July 2011, and currently each has two residents in the program. Details of the Programs at the Consortium Affiliate Sites may be found at:

Organizational Structure 
The program is located within the Department of Physics, Radiation Oncology Services at MBPCC and is headed by the Residency Program Director, Dr. Garrett Pitcher.

The direction and content of the program is governed by the Radiation Oncology Physics Residency Training Program Committee, which consists of:

  • MBPCC Residency Consortium Program Director – Garrett Pitcher, Ph.D.
  • MBPCC Chief of Physics – Jonas Fontenot, Ph.D.
  • MBPCC Chief of Clinical Physics – Dan Neck, M.S.
  • UMMC Affiliate Program Director – Chunli “Claus” Yang, Ph.D.
  • WKCC Affiliate Program Director – Joe Dugas. Ph.D.
  • Director of the Medical and Health Physics Program at LSU – Wayne Newhauser, Ph.D.
  • An ABR-certified radiation oncologist
  • An MDCB-certified medical dosimetrist
  • A certified radiation therapist

All clinical operations of the program are administered by board certified or board eligible staff (medical physicists and medical dosimetrists) who report to the Chief of Clinical Physics at MBPCC, Daniel Neck, M.S., and the Chief of Physics, Dr. Jonas Fontenot, who also serves as Chief Operating Officer at Mary Bird Perkins.

Historical Development
MBPCC and its Physics department have been actively involved in Medical Physics education and training for over 25 years through the training of Medical Physics graduate students at LSU. In 2004, MBPCC entered into a formal agreement with LSU for an integrated academic-community cancer center model for Medical Physics. This agreement was integral in the 2006 CAMPEP accreditation of the M.S. in Medical Physics and Health Physics Program and the 2011 CAMPEP accreditation of the Ph.D. in Physics with specialization in Medical Physics within the LSU Department of Physics and Astronomy. Development of a CAMPEP-accredited Medical Physics Residency Program was the next planned step in the training of clinical medical physicists.

In 2004, MBPCC administration granted approval for the creation of a Radiation Oncology Physics Residency Training Program. Over the next four years, departmental faculty and staff were added to a level adequate to establish and sustain the Program. Program development began in March 2009, under the supervision of Program Director Dr. John P. Gibbons, Jr. The first resident began the Program on July 1, 2009 and completed residency training on August 31, 2011.

In October 2014, Dr. Jonas Fontenot succeeded Dr. Gibbons serving as program Director  Program Director for until December, 2021. At that time, Dr. Garrett Pitcher was appointed as Program Director, while Dr. Fontenot continues to serve as Chief of Physics and Chief Executive Officer of MBPCC, as well as on the Residency Steering Committee.

In 2021, the program received re-accredited by CAMPEP through December, 2026.

Mary Bird Perkins and all of our affiliate residency training sites participate in the medical physics matching program (MedPhys Match Program) administered by National Matching Services, Inc. Therefore, all interested applicants must register with the MedPhys Match Program. Since each affiliate of the Consortium has its own code in the MedPhys Match and will be independently selecting their next resident(s), applicants must indicate each individual affiliate to which they are applying to be considered for a position at that institution. Site codes for all Mary Bird Perkins Affiliates are as follows: Mary Bird Perkins Cancer Center, Baton Rouge, LA (Code: 12611), Willis-Knighton Cancer Center, Shreveport, LA (Code: 19311), and the University of Mississippi Medical Center, Jackson, MS (Code: 19411). Applications are accepted only through the AAPM Medical Physics Residency Application Program (MP-RAP) system and must include a cover letter, CV, graduate education transcripts, and three letters of reference. For international candidates, please note that neither Mary Bird Perkins Cancer Center nor its affiliates provide assistance for G1/H1 visa applications.

The admissions process requires both the formal application through the AAPM MP-RAP system and an interview. While each affiliate site in the Mary Bird Perkins Residency Consortium independently selects and interviews candidates, a general guideline to the process similar to that at the hub location (Mary Bird Perkins Cancer Center, Baton Rouge, LA) is followed by all affiliate sites. After the stated closing date for applications, application materials for all candidates will be reviewed by the Program and selected applicants scheduled for interviews. Each selected applicant will interview with the members of the Program Committee and/or faculty at each particular site.

Upon completion of the interviews, each interviewer provides an evaluation to the Program Director who will compile the information for each interviewee to create a final ranking list. Rankings will then be entered into the MedPhys Match.

For positions beginning on July 1, all applications are due in mid to late December, with interviews taking place during January and February. Offers will be made via the Med Phys Match in March.


Clinical Rotations
Each resident is assigned to a clinical medical physics staff member to perform clinical tasks under his/her supervision. The MBPCC clinical structure consists of three clinical rotations with a medical physics resident spending one month on a clinical assignment before rotating to the next assignment. In addition to these rotations, the resident will perform a month-long treatment planning rotation resulting in a resident rotation cycle of six months. This means that the resident will complete approximately six four-month cycles during the two-year residency.

This first cycle is designed to introduce the resident to the clinical duties for each rotation in which the resident observes the clinical medical physicist performing the duties of that rotation. During this time they are expected to learn all clinical medical physics responsibilities for each rotation and document all clinical procedures. The resident has a limited hands-on role during the first cycle of rotations. All duties will be approved by the supervising clinical medical physicist.

The second and third cycles are designed for the resident to gain more hands-on experience in clinical assignments. The resident is expected to perform all clinical duties in the rotation under the supervision of a MBPCC clinical medical physicist. 

After completion of the third cycle of rotations (i.e., end of first year of residency), the resident is credentialed by MBPCC to independently perform clinical medical physics assignments that do not require board certification. Resident credentialing will be approved by the Program Director and Chief of Clinical Physics.

In the second year of the residency, the resident is assigned to regular clinical duties within the Department of Physics. The resident independently performs those clinical duties for which they are credentialed. All duties that the resident is not allowed to independently perform (e.g., HDR treatment deliveries) continue to be done under the supervision of a clinical medical physicist. In these cases, appropriate documentation will continue to be approved by both the resident and supervising medical physicist.

Independent Projects
In parallel with the clinical assignments, the resident is assigned projects that cover topics which are not encountered in daily clinic duties (e.g., linac acceptance and commissioning, treatment planning system commissioning and beam modeling, etc.). These are designed to be major projects that require longer periods to complete (i.e., 1-2 months). These projects have specific goals and end points. They also require the resident to read and become familiar with appropriate materials (e.g., AAPM Task Group reports, MPPG Reports, journal articles, etc.) related to the topic of the project. These projects are designed to be completed outside of assigned clinical duties.

The resident is assigned to a mentor for the duration of each project. At the beginning of each project, the mentor provides the resident a written project description with the expected goals and objectives for the project. This description also includes a list of topical references which the resident is expected to read and understand. The mentor provides initial instruction related to the performance of the project (e.g., operation of required equipment). The resident is expected to independently perform all tasks required to complete the project. Throughout the duration of the project, the mentor is available for questions and additional instruction or information as needed.

Upon completion of the project, the resident submits a written report documenting all tasks completed as required by the project mentor. The report includes appropriate documents and data specific to the project. Reports are expected to be of a quality appropriate for submission as a clinical release report at MBPCC.

Residents are required to complete 16 core and 4 elective projects, resulting in 20 total projects over their two years. The core projects consist of standard topics that every medical physicist should be familiar with upon completion of their residency, such as TG-51 dosimetry and linear accelerator QA and commissioning. The elective projects are determined by each individual resident, providing the flexibility to choose particular areas of interest of investigate.

Additional Duties
In addition to the clinical rotations and independent projects, the resident participates in any clinically-relevant major projects that may arise that are not specifically covered in the clinical and project assignments. These may include, but are not limited to:

  • Acceptance testing and commissioning of new equipment
  • Testing and implementation of new treatment techniques
  • Implementation of new equipment and procedures
  • Clinically-related development projects
  • Evaluation of potentially new clinical technologies

Resident involvement in these additional projects will not detract from the clinical assignment and independent project requirements described above.

Second-year residents are involved in the training of first-year residents as allowed by clinical and project schedules. This role is intended to develop the resident supervisory skills within a clinical setting. The second-year resident does not formally oversee clinical duties assigned to the first-year resident, but assists in development of skills necessary for completion of projects assigned to the first-year resident (e.g., set-up and operation of scanning systems, operation of linear accelerators, IMRT QA, etc.).

Typical Two-Year Rotation for MBPCC Site

YearMonthClinical RotationProjectProject Mentor
Year 1JulyDosimetryOrientationPitcher
AugustSRSDosimetric Systems I (core)Schneider
SeptemberHDR/LDRMLC & Gantry Static IMRT QA (core)Perrin
OctoberMotion ManagementCT / PET Acceptance & Commissioning (core)Solis
NovemberDosimetryRadiation Safety & Regulations (core)Stam
DecemberSRSTG-51 Absolute Dosimetry (core)Voss
Year 2JanuaryHDR/LDRProton Therapy (elective)Pitcher
FebruaryMotion ManagementLinac Acceptance, Commissioning & QA (core)Neck
MarchDosimetryLDR Program & QA (core)Schneider
AprilSRSIGRT Commissioning & QA (core)Fontenot
MayHDR/LDRTPS Commissioning & QA (core)Pitcher
JuneMotion ManagementShielding Design & CalculationsVoss
AugustSRSTotal Skin Electron Therapy (elective)Neck
SeptemberHDR/LDRHDR Commissioning & QA (core)Pitcher
OctoberMotion ManagementDosimetric Systems II (core)Solis
NovemberDosimetrySRS Program & QA (core)Neck
DecemberSRSTG-100 (elective)Pitcher
Year 3JanuaryHDR/LDRGantry-Dynamic IMRT: Commission/QA for VMAT (core)Fontenot
FebruaryMotion ManagementMU Second Check Commissioning (core)Perrin
MarchDosimetryTG-132 Image Fusion Commissioning & QA (core)
AprilSRS4DCT & Gating: Commissioning & QA (core)Chu
JuneMotion Management

Residents are expected to pass regular oral exams as part of their performance evaluation. Each resident is examined over a two to three hour period every four months. In addition to the oral exams, monthly feedback from the project and rotation mentors is used to determine satisfactory performance by the residents.

Tracking of resident time, tasks, clinical experiences, completed competencies, reports, and most evaluations is performed using the web-based Allied Health Student Tracking (AHST) software from Typhon Group (Metairie, LA; Residents are able to access the system and enter information on their Program training requirements (completion of assigned competencies, attendance of required meetings, attended lectures, etc.). Program faculty have access to this data as well as many reporting tools to analyze and approve entries. An evaluation survey has been created for residents to evaluate the assigned faculty member for each month of clinical rotation or for each assigned project. Additionally, an evaluation survey has been created to allow faculty members to evaluate resident performance for each clinical rotation or project that the faculty member supervises.

If the resident’s performance on the mentor and instructor evaluations or oral exams is found to be unsatisfactory, the resident is counseled and a plan for additional study and evaluation of the particular topics is created. Failure to consistently perform at a satisfactory level in the clinical rotations or projects may result in dismissal from the Program and termination of employment.


In order to satisfactorily complete the residency program, the resident must:

  1. If necessary, successfully complete any outstanding didactic coursework consistent with the AAPM report “The Essential Medical Physics Didactic Elements for Physicists Entering the Profession through an Alternative Pathway.” This coursework should encompass the following graduate-level core topics:

    Radiological Physics and Dosimetry
    Radiation Protection and Radiation Safety
    Fundamentals of Imaging in Medicine
    Anatomy and Physiology
    Radiation Therapy Physics

    Outstanding didactic coursework will be provided by the CAMPEP-accredited LSU graduate program in Medical Physics. Didactic coursework will be completed in parallel with the clinical training requirements of the residency program. If the required didactic coursework exceeds one course/semester, the residency program duration may be extended to allow adequate time to fulfill the training requirements.

  1. Successfully complete all clinical rotations within the Department of Physics. Each resident will be assigned to a staff clinical medical physicist who will serve in a supervisory role for each clinical rotation.
  2. Successfully complete all independent projects, which are assigned to cover major clinical medical physics topics not encountered on a routine basis (e.g., linac acceptance and commissioning, treatment planning system commissioning, etc.).
  3. Attend various department meetings, conferences, and seminars that are relevant to the resident’s training. The resident shall have an attendance rate of no less than 75% for all meetings, conferences, and seminars.
  4. Obtain satisfactory performance evaluations from staff medical physicists for all clinical rotations and independent projects. If evaluation is not satisfactory, complete additional assignments to make up any deficiencies.
  5. Pass regular oral exams administered by supervising medical physicists, residency Program Director, and designees from affiliate partner sites. If exam performance is not satisfactory, additional work in particular areas may be assigned followed by re-examination at a later date.

Educational toolsThe Program currently has eight residents, four at MBPCC and four at the affiliate sites. Currently, the program admits four new residents each year with two of those residents being located at MBPCC.


Resident-related expenses include resident salary and benefits, training materials (online resources, journals, etc.), a laptop computer,  travel (car or airfare, room and board) for training or professional meetings, professional membership dues, and incidentals (such as office supplies).

Program residents are paid the same as physician PGY-1 and PGY-2 residents in regional residencies of the LSU System for the first and second years of residency, respectively. These salaries vary with inflation and slightly by location, but are approximately $56,000 per year in Baton Rouge. Each resident is also provided benefits from the respective institution. At MBPCC, these include medical, dental, life insurance, 403(b), and 15 days of paid time off with an additional 10 days of floating and select federal holidays.


Each year a senior resident is selected from among the 2nd year residents in the consortium.  The senior resident’s responsibilities include giving a resident report to the Program Committee at the monthly Residency Committee meetings on any issues or concerns with the Program.  Additionally, the senior resident is primarily responsible for coordinating consortium-wide resident activities, such as periodic journal club, ABR Board review, and social events.

All residents and faculty are invited for workshops and/or symposiums hosted by MBPCC, and the annual residency graduation ceremonies in June.


Graduation Data
Through 2021, 41 residents have completed the program. See the table below for a summary of the types of positions our residents were able to obtain after graduation from our program, as well as their ABR statuses.

Medical Physics Residency Training Stats

click image for full size view.

The following describes the Program resources available at MBPCC. Program resources at the affiliate sites may be obtained by contacting each Program director or on their website.

MBPCC is the only community-owned, independent, nonprofit cancer treatment, education, and research facility in Louisiana. MBPCC provides radiation oncology services in southeast Louisiana and southwest Mississippi and annually treats approximately 2500 new patients between its main center located in Baton Rouge, LA and six satellite facilities located within two hours of the main center. MBPCC currently has nine radiotherapy linacs, eight Elekta and one Varian. In late 2016 an Elekta Gamma Knife Icon was installed and commissioned at the main center in Baton Rouge. MBPCC also offers numerous brachytherapy procedures, with three HDR remote afterloaders at different facilities in addition to LDR prostate implants performed at the main center.


MBP entrance

MBPCC currently employs 11 medical physicists within its Department of Physics. Of these, seven hold M.S. degrees and four hold Ph.D. degrees. All are certified by the American Board of Radiology (ABR) in Therapeutic Radiologic Physics or actively engaged in the ABR certification process. Four of the program faculty hold adjunct faculty appointments in the LSU Department of Physics and Astronomy. There are currently 2.4 medical physics FTEs at MBPCC dedicated to academic endeavors (didactic graduate education, clinical training, and research). Dosimetry staffing includes seven medical dosimetry positions, all of which are certified medical dosimetrists (CMDs). Physician staffing includes 12 radiation oncologists, of which all are ABR-certified in Radiation Oncology or actively engaged in the ABR certification process. Most staff members (academic and clinical) are also involved in didactic lectures, clinical training, and research within the Medical Physics graduate program. 


External Beam Treatment Delivery System

  • 7 Elekta Infinity or Versa radiotherapy accelerators with MLC, iView and XVi imaging
    • Photon energies
      • 6 MV
      • 6 MV flattening filter free (FFF) mode
      • 10 MV
      • 10 MV FFF
      • 15 MV
    • Electron energies
      • 7, 9, 10, 11, 13, 16, and 20 MeV
  • Gamma Knife Icon System
  • Varian Clinac 21iX

Patient Data Systems

  • GE Lightspeed RT CT Simulator (4D Advantage Workstation)
  • 5 GE Discovery ST PET-CT Simulators

MOSAIQ Record and Verify System

Treatment Planning Systems

  • Philips ADAC Pinnacle systems
  • GammaPlan stereotactic planning system
  • Mobius 3D MU verification software
  • MU Check software
  • MIM software for deformable image registration, dose accumulation, 4DCT evaluation
  • Raystation planning system (research)

Brachytherapy Systems

  • 3 Nucletron HDR systems with breast (MammoSite & SAVI) and gynecological applicators (cylinders, tandem & ovoids, interstitial tandem & ring)
  • Oncentra planning software for HDR brachytherapy
  • Varian VariSeed LDR planning system (prostate seeds)
  • Sr-90 ophthalmic applicator
  • I-125 eye plaques for ocular melanoma

 Dosimetry Lab

  • 3D beam scanning system (iba/Welhofer/Scanditronix)
  • 2D beam scanning systems (Scanditronix, TomoDose, CRS)
  • Sun Nuclear diode arrays – 1D (Profiler) and 2D (MapCheck) diode arrays)
  • Landauer microSTAR OSLD system
  • TLD in-vivo dosimetry system (Rexon)
  • Radiographic film scanning system (Vidar scanner, RIT, and TomoScan software)
  • Radiochromic film scanning system
  • Tissue equivalent phantoms (rectangular, cylindrical, and 4D)
  • Cylindrical water phantoms with 1D scanning (for rotational therapy)
  • Anthropomorphic CIRS “Fred” head phantom
  • Anthropomorphic “Rando” torso and head phantom

Patient Support Labs/QA Systems

  • Treatment planning room
  • Block and mold room


  • 600 SF classroom with white boards, LCD projector, and tables. Equipped with remote video conferencing to facilitate meetings with satellite facilities.
  • 1800 SF seminar room with LCD Projector and seating for 50 or more
  • Small radiation oncology library

Residents are given sufficient workspace and resources at MBPCC. Residents are located in a common office area to encourage collaboration and learning among fellow residents. The resident office is located in the same area as clinical medical physics staff offices and in close proximity to the clinical treatment area. Each resident is provided a workspace with adequate office supplies.

Each resident is provided a laptop computer that can be transported as necessary within the MBPCC main center and its satellite facilities. Each resident has a personal folder on the MBPCC network, which is essentially unlimited in space. There is also a folder that is accessible only by medical physics staff (including the resident) that is used for medical physics records and documents. The resident has access to all folders available to clinical medical physics staff members, with the exception of those related to Program administration. The resident’s laptop is configured with all software and clinical access required to perform all clinical duties and assignments within the program.

Conference rooms are available for use at MBPCC with one conference room dedicated to the Department of Physics. These are used for teaching, meetings, presentations, and oral examinations.  Two of the conference rooms, including the physics room primarily used for presentations and oral exams, are equipped with state of the art audio/visual equipment. All conference rooms have wireless access to the secure MBPCC network and the internet. There is also access to an unsecured guest wireless network.

Residents have access to all relevant medical physics and clinical journals through multiple sources. These include a small library at MBPCC, online and hard-copy access through Program faculty, and access via the LSU library system.

Additional Information may be obtained below:

Mary Bird Perkins Cancer Center Radiation Oncology Physics Residency Program
Mary Bird Perkins Cancer Center
4950 Essen Lane
Baton Rouge, LA 70808
Program Director: Garrett Pitcher, Ph.D., DABR
Program Administrator:  Katelynn Fontenot
Tel: (225) 215-1134 / Fax: 225-215-1364

Willis-Knighton Medical Physics Residency Program
Willis-Knighton Cancer Center
2600 Kings Highway
Shreveport, LA 71103
Program Director: Joseph P. Dugas, Ph.D., DABR
Tel: (318) 212-6234 / Fax: 318-212-8305

University of Mississippi Radiation Oncology Physics Residency Program
University of Mississippi Medical Center
350 West Woodrow Wilson Drive, Suite 1600
Jackson, MS 39213
Program Director: Chunli “Claus” Yang, Ph.D.
Tel: (601) 815-7562 / Fax: 601-815-6876

Areas of Research

Our Medical Physics Program covers an array of research topics. Mary Bird Perkins Cancer Center and LSU are dedicated to teaching our students about the latest Medical Physics technologies and therapies, as well as furthering research in the areas below.

Volumetric modulated arc therapy (VMAT) is a new radiation therapy technique that can decrease the time needed to delivery a radiation therapy treatment by 50% or more. VMAT delivery coordinates and optimizes the movement of the gantry, multi-leaf collimator and dose rate such that IMRT-quality dose distributions are delivered in a fraction of the time. Current VMAT research at Mary Bird Perkins Cancer Center focuses on determining proper clinical indications for use of VMAT and verifying that VMAT treatments are delivered as planned.

Investigators: Fontenot

Image-guided radiation therapy (IGRT) is used for highly-focused radiation therapy treatments to ensure that the tumor and surrounding healthy tissue are precisely positioned for treatment. IGRT radiotherapy is particularly useful for irradiation of brain and other small tumors of the head. We have developed a measurement technique with 0.3-mm accuracy to assess IGRT using the BrainLab Novalis ExacTrac System in the brain. Future studies will use this system to study other sites in the head and to study other modalities such as TomoTherapy MVCT and Elekta XVI.

Investigators: Fontenot, Hogstrom

Electron beam therapy is an advantageous radiation therapy technique for treating tumors that are located at or near the surface of the skin. Segmented field ECT utilizes multiple abutted fields of differing energy. Dose uniformity at the borders of abutted fields was recently studied using energy-dependent source-to-collimator distances of the lead-alloy inserts and currently the potential of using an electron multileaf collimator (eMLC) to feather the borders is being investigated. Another issue under investigation is a forward planning algorithm for segmented field ECT. We also plan to investigate the improved utility of segmented field ECT for decreased energy spacing on radiotherapy linacs and how that compares with bolus ECT.

Investigators: Hogstrom, Pitcher

Proton radiation therapy is a type of radiation therapy which uses a beam of protons to irradiate tumors. The chief advantage of proton therapy is the ability to more precisely localize the radiation dosage when compared with other types of radiation therapy. Proton therapy research at Mary Bird Perkins Cancer Center focuses on development of dose calculation algorithms that can better exploit the advantages of protons during treatment planning. We are also examining peripheral, or out-of-field, doses attributed to different types of proton radiation therapy treatments and contrasting them with other types of radiation therapy.

Investigators: Newhauser, Hogstrom, Fontenot, Zhang, Pitcher

Electron beams are commonly used to treat superficial cancers. Our group has focused a great deal of effort into redesigning the Elekta Infinity linear accelerator’s electron delivery system.  Specifically, we are redesigning the dual flattening foil system and electron applicators in order to extend their utility and increase the robustness of their clinical use.  The dual flattening foil system acts to flatten and create a radially symmetrical beam for patient irradiation.  Electron applicators are used to collimate the electron beam close to the patient’s surface and protect the patient from any stray radiation created by the machine’s components.  To validate and improve our designs, a Monte Carlo model has been created of the Elekta Infinity in order to simulate the dosimetric properties of both the current and suggested component designs.

Investigators: Hogstrom, Pitcher

Auger electron therapy is a type of targeted therapy that aims to enhance radiation damage to the tumor while simultaneously avoiding damage to surrounding healthy tissue. The utility of using monochromatic x-rays (CAMD synchrotron light source) to initiate Auger electron therapy via iododeoxyuridine (IUdR) in cellular DNA is under investigation. A radiation therapy experimental beam line (FS= 3×3 cm2and E< 40 keV) has been configured and dosimetry methods established (Oves et al 2008). Current research is studying the increased biological effect of this therapy relative to conventional photon therapy on CHO cells as a function of energy and % IUdR. Future experiments will involve small animals and study the ability of using a free-electron laser in lieu of the synchrotron.

Investigators: Hogstrom, Matthews

The secondary effects research at Mary Bird Perkins Cancer Center focuses on cancer prevention and cancer survivorship. Specifically, we seek to better understand the risks of treatment-related health problems faced by cancer survivors. The long term goal is to provide an enhanced based of evidence for making clinical decisions (e.g., selection of radiation treatment modality) and health care policy decisions (rational allocation of scarce health care resources). Our recent research has focused on children and young adults, e.g., with tumors of the central nervous system and Hodgkin Disease. We have also studied treatments for cancer of the prostate, liver, lung and other sites. Our research examines advanced radiotherapies, such as intensity modulated proton and photon therapies, as well as conventional photon therapy. This research is trans-disciplinary, including medical physics, software and nuclear engineering, high performance computing, statistics, cancer prevention and epidemiology and oncology.

Investigators: Newhauser, Zhang, Fontenot


W. Newhauser and R. Zhang, “The physics of proton therapy,” Phys. Med. Biol. (2015).

L. Wilson, D. Mirkovic and W. Newhauser, “A simple and fast physics-based analytical method to calculate therapeutic and stray doses from external beam, megavoltage x-ray therapy
,” Phys. Med. Biol. 60 4753-4775 (2015).

R. Zhang*, D. Mirkovic and W. Newhauser, “Visualization of risk of radiogenic second cancer in the organs and tissues of the human body,” Radiat Oncol 10: 107 (2015).

D. Alvarez, K. R. Hogstrom, K. L. Matthews II, K. Ham, T. D. Brown, and M. E. Varnes. “Impact of IUdR on rat glioma cell survival for 25-35 keV photon-activated Auger electron therapy,” Rad Res 182”607-17 (2014).

M. Sutton, J. D. Fontenot, K. Matthews, B. Parker, M. King, J. Gibbons, and K. Hogstrom, “Accuracy and precision of cone beam CT-guided intensity modulated radiation therapy,” Pract Radiat Oncol 4: e67-e73 (2014).

G. Nichols, J. D. Fontenot, J. P. Gibbons, and M. Sanders, “Evaluation of volumetric modulated arc therapy for postmastectomy treatment,” Radiat Oncol 9 1-8 (2014).

J. Fontenot, “Evaluation of a novel secondary check tool for intensity modulated radiation therapy treatment planning,” J App Clin Med Phys 15:4990-4997 (2014)

H. Wang and O. N. Vassiliev, “Microdosimetric characterization of radiation fields for modelling tissue response in radiotherapy,” at press in Int J Cancer Ther Oncol 2(1): 1-10 (2014).

H. Wang and O.N. Vassiliev, “Radial dose distributions from protons of therapeutic energies calculated with GEANT4-DNA,” Phys Med Biol 59: 3657- 68 (2014).

JP Gibbons, JA Antolak, DS Followill, MS Huq, EE Klein, KL Lam, JR Palta, DM Roback, and FM Khan, “Monitor unit calculations for external photons and electron beams: Report of the AAPM Therapy Physics Committee Task Group 71,” Med Phys 41 (2014).

J. D. Fontenot, H. Alkhatib, J. Garrett, A. Jensen, S. McCullough, A. Olch, B. Parker, and C. Yang, “AAPM medical physics practice guideline: commissioning and quality assurance of x-ray based image guided radiotherapy systems,” J App Clin Med Phys 15: 3-13 (2014)

BC Parker, J Duhon, CC Yang, HT Wu, KR Hogstrom, and JP Gibbons, “Medical Physics Residency Consortium: collaborative endeavors to meet the ABR 2014 certification requirements,” J App Clin Med Phys 15: 337-44 (2014).

WD Newhauser, T Jones, S Swerdloff, R Zhang, and WA Newhauser, “Anonymization of DICOM Electronic Medical Records for Radiation Therapy,” Comp Biol Med 53:134-40 (2014).

Y Akino, JP Gibbons, DW Neck, C Chu, and IJ Das, “Intra- and intervariability in beam data commissioning among water phantom scanning systems,” J App Clin Med Phys 15: 251-8 (2014).

Vassiliev, “A model of the radiation-induced bystander effect based on an analogy with ferromagnets. Application to modelling tissue response in a uniform field,” Physica A 416: 242-251 (2014).

JG Eley, WD Newhauser, R Luchtenborg, C Graeff, and C Bert, “4D Optimization of scanned ion beam tracking therapy for moving tumors” Phys Med Biol 59: 3431-52 (2014).

R. Zhang, R. Howell, P. Taddei, A. Giebeler, A. Mahajan, and W. Newhauser “A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation,” Radiother and Oncol 113:84-8 (2014).

R. Carver, K. R. Hogstrom, M. J. Price, J. Leblanc, and G. Pitcher, “Real time simulator for designing dual scattering foil systems,” J App Clin Med Phys 15: 4849-59 (2014).

R. Zhang, R. M. Howell, A. Giebeler, P. J. Taddei, A. Mahajan, W. D. Newhauser. “Comparison of Risk of Radiogenic Second Cancer between Photon and Proton Craniospinal Irradiation for a Pediatric Medulloblastoma Patient.” Phys Med Biol 58(4): 807-23 (2013).

R. Zhang, J. D. Fontenot, D. Mirkovic, J. Hendricks, W. D. Newhauser. “Advantages of MCNPX-Based Lattice Tally over Mesh Tally in High-Speed Monte Carlo Dose Reconstruction for Proton Radiotherapy.” Nucl Tech 183: 1-6 (2013).

A. Giebeler, W. D. Newhauser, R. A. Amos, A. Mahajan, K. Homann, and R. M. Howell. “Standardized Treatment Planning Methodology for Passively Scattered Proton Craniospinal Irradiation.” Rad Onc 8: 32 (2013).

W. Newhauser, L. Rechner, D. Mirkovic, P. Yepes, N. Koch, J. D. Fontenot, and R. Zhang, “Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams,” Radiat Meas 58 37-44 (2013).

R. Zhang, R. Howell, K. Homann, A. Giebeler, P. Taddei, A. Mahajan, and W. Newhauser, “Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy, “ Radiat Oncol 8: 184-193 (2013).

A. Perez-Andujar, W Newhauser, P Taddei, A Mahajan, and RM Howell, “The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation,” Phys Med Biol 58(10): 3107-3123 (2013).

P Taddei, W Jalbout, R Howell, N Khater, F Geara, K Homann, and W Newhauser, “Analytical model for out-of-field dose in photon craniospinal irradiation,” Phys Med Biol 58(21): 7463-7479 (2013).

A. Perez-Andujar, R Zhang, and W Newhauser, “Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy,” Med Phys 40(12): 121714 (2013).

J. D. Fontenot and E. E. Klein, “Technical challenges in liver stereotactic body radiation therapy: reflecting on the progress,” (editorial) Int J Radiat Oncol Biol Phys 85 869-870 (2013).

Kavanaugh, K. Hogstrom, C. Chu, R. Carver, J.D. Fontenot, and G. Henkelmann, “Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy,” Med Phys 40 0217241 (2013).

RL Carver, KH Hogstrom, C Chu, RS Fields, and CP Sprunger, “Accuracy of Pencil-Beam Redefinition Algorithm Dose Calculations in Patient-Like Cylindrical Phantoms for Bolus Electron Conformal Therapy”, Med Phys 40 071720 (2013).

J Silkwood, KL Matthews, and PM Shikhaliev. “Photon counting spectral breast CT: effect of adaptive filtration on CT number, noise, and contrast to noise ratio” Med Phys 40(5): 051905 (2013).

X Wang, JN Yang, X Li, R Tailor, O Vassiliev, P Brown, L Rhines, and E Change, “Effect of spine hardware on small spinal stereotactic radiosurgery dosimetry,” Phys Med Biol 58: 6733-47 (2013)

Shikhaliev, P.M. “Dedicated phantom materials for spectral radiography and CT.” Physics in Medicine and Biology 57: 6, 2012.

Shikhaliev, P.M. “Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.” Physics in Medicine and Biology 57: 6, 2012.

Newhauser, W.D., Scheurer, M.E., Faupal-Badger, J.M., Clague, J., Weitzel, J., Woods, K.V. “The Future Workforce in Cancer Prevention: Advancing Discovery, Research, and Technology.” Journal of Cancer Education Supplement 2, 2012.

Shikhaliev, P.M. “Dedicated phantom materials for spectral radiography and CT.” Physics in Medicine and Biology 57: 6, 2012.

Shikhaliev, P.M. “Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.” Physics in Medicine and Biology 57: 6, 2012.

Howell, R.M., Giebeler, A., Koontz-Raisig, W., Mahajan, A., Etzel, C.J., D’Amelio Jr, A.M., Homann, K.L., Newhauser, W.D. “Comparison of therapeutic dosimetric data from passively scattered proton and photon craniospinal irradiations for medulloblastoma.” Radiation Oncology 7:1, 2012.

Rechner, L.A., Howell, R.M., Zhang, R., Etzel, C., Lee, A.K., Newhauser, W.D. “Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer.” Physics in Medicine and Biology 57:21, 2012.

Mancuso, G.M., Fontenot, J.D., Gibbons, J.P., Parker, B.C. “Comparison of action levels for patient-specific quality assurance of intensity modulated radiation therapy and volumetric modulated arc therapy treatments.” Medical Physics 39:7, 2012.

Fontenot, J.D. “Feasibility of a remote, automated daily delivery verification of volumetric-modulated arc therapy treatments using a commercial record and verify system.” Journal of Applied Clinical Medical Physics 13:2, 2012.

Rechner, L.A., Howell, R.M., Zhang, R., Newhauser, W.D. “Impact of margin size on the predicted risk of radiogenic second cancers following proton arc therapy for prostate cancer.” Physics in Medicine and Biology 57:23, 2012.

Vassiliev, O.N. “Formulation of the Multi-hit Model with a Non-Poisson Distribution of Hits.” International Journal of Radiation Oncology Biology Physics83:4, 2012.

Vassiliev, O.N., Kudchadker, R.J., Kuban, D.A., Frank, S.J., Choi, S., Nguyen, Q., Lee, A.K. “Dosimetric impact of fiducial markers in patients undergoing photon beam radiation therapy.” Physica Medica 28:3, 2012.

Vassiliev, O.N. “Electron slowing-down spectra in water for electron and photon sources calculated with Geant4-DNA code.” Physics in Medicine and Biology 57:4, 2012.

Brown, T.A.D., Hogstrom, K.R., Alvarez, D., Matthews II, K.L., Ham, K., Dugas, J.P. “Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams.” Medical Physics 39:12, 2012.

Brown, T.A.D., Hogstrom, K.R., Alvarez, D., Matthews II, K.L., Ham, K. “Veridication of TG-61 does for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations.” Medical Physics 39:12, 2012.

Bao, Q., Hrycushko, B.A., Dugas, J.P., Hager, F.H., Solberg, T.D. “A Technique for Pediatric Total Skin Electron Irradiation.” Radiation Oncology 7:40, 2012.

Majdzadeh, N., Jain, S.K., Murphy, M.C., Dugas, J.P., Hager, F. Abdulrahman, R. “Total Skin Electron Beam Radiation in a Pediatric Patient with Leukemia Cutis, A case report.” Journal of Pediatric Hematology/Oncology 34:7, 2012.

Howell, R. and Newhauser, W.D. “TH?B?BRA?01: Educational course therapy.” Medical Physics 38, 3849, 2011.

Taddei, P.J., Mirkovic, D., Howell, R.M., Zhang, R., Giebeler, A., Mahajan A., and Newhauser, W.D. “MO?G?BRC?01: Comparison of the risk of second malignant neoplasm in a developed country versus a developing country for a 13-year-old girl receiving craniospinal irradiation.” Medical Physics 38, 3736, 2011.

Giebeler, A., Howell, R., Zhang, R., Mahajan, A., and Newhauser, W.D. “SU?E?T?47: A Method to increase statistical power in micro?clinical trials for second cancers following advanced techniques for pediatric radiotherapy.” Medical Physics, 38, 3496, 2011.

Zhang, R., Howell, R., Giebeler, A., Taddei, P., Mahajan, A., and Newhauser, W.D.“SU?E?T?43: Calculation of the risks of second cancer and cardiac toxicities for a pediatric patient treated with photon and proton radiotherapies.” Medical Physics, 38, 3495, 2011.

Randeniya, S., Mirkovic, D., Kry, S., Titt, U., Newhauser, W.D., and Howell, R. “MO?G?BRC?02: Patient specific out?of?field dose calculation tool for 6MV and 18MV: Development and validation.” Medical Physics, 38, 3736, 2011.

Luo, D., Eley, J., Du, W., Shiu, A., Chang, E., Brown, P., and Newhauser, W.D. “SU?E?T?244: Should treatment time be included in assessing the quality of a gamma plan?” Medical Physics, 38, 3543, 2011.

Rechner, L., Howell, R., Zhang, R., and Newhauser, W.D., and Lee, A. “WE?G?BRA?03: Risk of second malignant neoplasms following VMAT and proton arc therapy for prostate cancer.” Medical Physics, 38, 3826, 2011.

Huang, J., Newhauser, W., Zhu, X., Lee, A., and Kudchadker, R. “TU?G?BRB?01: Investigation of dose perturbations and radiographic visibility of potential fiducials for proton radiation therapy of the prostate.” Medical Physics, 38, 3778, 2011.

Brown, T., Matthews, K., Ham, K., Alvarez, D., and Hogstrom, K. “SU-C-224-09: Energy and dose calibration of a synchrotron-produced monochromatic X-ray beam.” Medical Physics, 38, 3367, 2011.

Kavanaugh, J., Carver, R., Chu, C., Mancuso, G., and Hogstrom, K. “SU-E-T-400: Evaluation of a pencil beam algorithm and pencil beam redefinition algorithm for bolus electron conformal therapy.” Medical Physics, 38, 3580, 2011.

Carver, R., Hogstrom, K., and Chu, C. “SU-E-T-732: Accuracy of electron dose From pencil-beam redefinition algorithm in patient-like 2D phantoms.” Medical Physics, 38, 3659, 2011.

Carver, R., Hogstrom, K., Chu, C. “SU-E-T-750: Interfacing the pencil beam redefinition algorithm with a commercial treatment planning system.” Medical Physics, 38, 3663, 2011.

Kavanaugh, J., Chu, C., Perrin, D., and Hogstrom, K. “SU-E-T-807: Measured data set for validation of bolus electron conformal therapy.” Medical Physics, 38, 3676, 2011.

Mancuso, G., Fontenot, J., Parker, B., Neck, D., González, G., and Gibbons, J. “SU-E-T-415: Investigation of VMAT patient specific quality assurance action levels.” Medical Physics, 38, 3583, 2011.

Mathews, B. and Price, M. “SU-E-T-369: Comparison of Monte Carlo calculations around an intracavitary brachytherapy CT-MR compatible Fletcher applicator with radiochromic film.” Medical Physics, 38, 3572, 2011.

Mathews, B. and Price, M. “SU-E-T-379: Development of a Monte Carlo based correction strategy for a TG-43 based brachytherapy treatment planning system to account for applicator inhomogeneities.” Medical Physics, 38, 3575, 2011.

Sutton, M., Matthews, K., and Parker, B. “SU-E-T-293: Accuracy of Elekta – image guided radiation therapy.” Medical Physics, 38, 3555, 2011.

Parker, B., Hogstrom, K., Gibbons, J., Mitra, R., Duhon, J., Yang, C., and Wu, H. “A hub-and-spoke residency model for meeting the 2014 ABR mandate.”

Fontenot, J. and Gibbons, J. “SU-E-T-24: Remote, automated daily delivery verification of volumetric modulated arc therapy treatments. Using a commercial record and verify system.” Medical Physics, 38, 3490, 2011.

Roberts, M., Parker, B., Gibbons, J., Price, M., Sanders, M., and Sprunger, P. “SU-E-T-486: Comparison of TLD measured dose and MVCT reconstructed dose for post-mastectomy chest wall irradiation with TomoTherapy.”  Medical Physics, 38, 3600, 2011.

WD Newhauser, ME Scheurer, JM Faupel-Badger, J Clague, J Weitzel, and KV Woods.  The Future Workforce in Cancer Prevention: Advancing Discovery, Research, and Technology, J. Ca Education (accepted for publication).

Fontenot, J.D., King, M.L., Johnson, S.A., Wood, C.G., Price, M.J., and Low, K.K. “Single-arc volumetric

modulated arc therapy can provide dose distributions equivalent to fixed-beam IMRT for prostatic irradiation with seminal vesicle or lymph node involvement.” The British Journal of Radiology, June 2011. ahead of print).

Matney, J. E., Parker, B.C., Neck D.W., Henkelmann, G.C., and Rosen, I.I. “Target localization accuracy in a respiratory phantom using BrainLab ExacTrac and 4DCT imaging.” Journal of Applied Clinical Medical Physics 12: 301-309, 2011.

Moldavan, M., Fontenot, J.D., Gibbons, J.P., Lee, T.K., Rosen, I.I., Fields, R.S., and Hogstrom, K.R. “Investigation of pitch and jaw width to decrease delivery time of helical tomotherapy.” Medical Dosimetry 36(4): 397-403, 2011.

Vassiliev, O.N., Kudchadker, R.J., Swanson, D.A., Bruno, T.L., van Vulpen, M., Frank, S.J. “Displacement of periurethral stranded seeds and its dosimetric consequences in prostate brachytherapy.” Brachytherapy 10:5, 2011.

Ashenafi, M., Boyd, R.A., Lee, T.K., Lo, K.K., Gibbons, J.P., Rosen, I.I., Fontenot, J.P., and Hogstrom, K.R. “Feasibility of postmastectomy treatment with helical TomoTherapy.” International Journal of Radiation Oncology Biology Physics 77:836-42, 2010.

Fontenot, J.D., Bloch, C., Followill, U., Titt, U., and Newhauser, W.D. “Estimate of the uncertainties in

the relative risk of secondary malignant neoplasms following proton therapy and intensity modulated

photon therapy.” Physics in Medicine and Biology 55:6987-6998, 2010.

Ito, S., Parker, B.C., Levine R., Sanders, M.E., Fontenot J., Gibbons, J.P., and Hogstrom, K.R. “Verification of calculated skin doses in post-mastectomy helical tomoTherapy.” International Journal of Radiation Oncology Biology Physics 81(2), 584-591, 2010.

Matney, J.E., Parker, B.C., Neck, D.W., Henkelmann, G.C., and Rosen, I.I. “Evaluation of a commercial flatbed document scanner and medical grade film scanner for radiochromic film dosimetry.” Journal of Applied Clinical Medical Physics 11(2): 198-208, 2010.

Price, M., Kry S., Eifel P., Salehpour M., and Mourtada, F. “Dose perturbation due to the polysulfone cap surrounding a Fletcher-Williamson colpostat.” Journal of Applied Clinical Medical Physics 11(1), 68-76, 2010.

Shikhaliev, P.M., Petrek P., Mathews II, K.L., Fritz, S.G., Bujenovic, L.S., and Xu, T. “Intravascular imaging with a storage phosphor detector.” Physics in Medicine and Biology 55: 2841-2861, 2010.

Shikhaliev, P.M. “The upper limits of the SNR in radiography and CT with polyenergetic X-rays.” Physics in Medicine and Biology 55: 5317-5139, 2010.

Carver, R., Cunningham, A., Frank, A., Hartigan, P., Cocker, R., Wilde, B., Foster, J., Rosen, P. “Laboratory Astrophysics and Non-ideal Equations of State: The Next Challenges for Astrophysical MHD Simulations.” High Energy Density Physics 6:4, 2010.

Kry, S.F., Vassiliev, O.N., Mohan, R. “Out-of-field photon dose following removal of the flattening filter from a medical accelerator.” Physics in Medicine and Biology 55:8, 2010.

Vassiliev, O.N., Wareing, T.A., McGhee, J., Failla, G., Salehpour, M.R., Mourtada, F. “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.” Physics in Medicine and Biology 55:3, 2010.

Fritz, S.G. and Shikhaliev, P.M. “CZT detectors used in different irradiation geometries: Simulations and experimental results.” Medical Physics 36(4): 1098-1108, 2009.

Fritz, S.G. and Shikhaliev, P.M. “Projection X-ray imaging with photon energy weighting: Experimental evaluation of a prototype detector.” Physics in Medicine and Biology 54: 4971- 4992, 2009.

Gerbi, B.J., Antolak, J.A., Followill, D.S., Herman, M.G., Higgins, P.D., Huq, M.S., Mihailidis, D.N., Yorke, E.D., Hogstrom, K.R., and Khan, F.M. “Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of task group 25.” Medical Physics 36: 3239-3279, 2009.

Gibbons, J.P., Smith, K., Cheek, D., and Rosen, I.I. “Independent calculation of dose from a helical TomoTherapy unit.” Journal of Applied Clinical Medical Physics 10: 103-119, 2009.

Shikhaliev, P.M., Fritz, S.G., and Chapman, J.W. “Photon counting multi-energy XD-ray imaging: Effect of the characteristic X-rays on detector performance.” Medical Physics 36(11): 5107-5119, 2009.

Weinberg, R., Antolak, J.A., Starkschall, G., Kudchadker, R.J., White, R.A., and Hogstrom, K.R. “Influence of source parameters on large-field electron beam profiles calculated using Monte Carlo methods.” Physics in Medicine and Biology 54: 105-116, 2009.

Hartigan, P., Foster, J., Wilde, B., Coker, R., Rosen, P., Hansen, F., Blue, B., Williams, R., Carver, R., Frank, A. “Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH110.” The Astrophysics Journal 705, 2009.

Kry, S.F., Howell, R.M., Polf, J., Mohan, R., Vassiliev, O.N. “Treatment vault shielding for a flattening filter-free medical linear accelerator.” Physics in Medicine and Biology 54:5, 2009.

Vassiliev, O.N., Kry, S.F., Chang, J.Y., Balter, P.A., Titt, U., Mohan, R. “Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac.” Journal of Applied Clinical Medical Physics 10:1, 2009.

Beardmore, A., Rosen, I.I., Cheek, D., Fields, R.S., and Hogstrom, K.R. “Evaluation of MVCT images with skin collimation for electron beam treatment planning.” Journal of Applied Clinical Medical Physics 9(3): 43-57, 2008.

Cheek, D., Gibbons, J.P., Rosen, I.I., and Hogstrom, K.R. “Accuracy of TomoTherapy treatments for superficial target volumes.” Medical Physics 35: 3565-73, 2008.

Das, I.J., Cheng, C.W., Watts, R.J, Ahnesjö, A., Gibbons, J., Li, X.A., Lowenstein, J., Mitra, R.K, Simon, W.E.,

Zhu, T.C., and TG-106 of the therapy physics committee of the AAPM. “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM.” Medical Physics 35:4186-4215, 2008.

Dugas, J.P., Oves, S., Sajo, E., Matthews II, K.L., Ham, K., and Hogstrom, K.R. “Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.” European Journal of Radiology 68S:
137-141, 2008.

Lee, T.K., Rosen, I.I, Gibbons, J.P., Fields, R.S., Hogstrom, K.R. “Helical TomoTherapy for parotid gland tumors.” International Journal of Radiation Oncology Biology Physics 70: 883-91, 2008.

Oves, S., Hogstrom K.R., Ham, K., Sajo, E., and Dugas, J.P. “Dosimetry intercomparison using a 35-keV x-ray synchrotron beam.” European Journal of Radiology 68S:121-125, 2008.

Shikhaliev, P.M. “Computed tomography with energy resolved detection: A feasibility study.” Physics in Medicine and Biology 53: 1475-1495, 2008.

Shikhaliev, P.M. “Energy resolved computed tomography: First experimental results.” Physics in Medicine and Biology 53: 5595-5813, 2008.

Smith, K., Gibbons, J.P., Gerbi, B.J., Hogstrom, K.R. “Measurement of superficial dose from a static TomoTherapy beam.” Medical Physics 35: 769-774, 2008.

Vinci, J., Hogstrom, K.R., and Neck, D. “Accuracy of cranial coplanar beam therapy with BrainLab ExacTrac image guidance.” Medical Physics 35: 3809-19, 2008.

Wang, W-H., Matthews II, K.L., and Teague, R.E.. “Dose rates of a cobalt-60 pool irradiator measured with Fricke dosimeters.” Health Physics 94 (Supplement 2): S44-S50, 2008.

Vassiliev, O.N., Wareing, T.A., Davis, I.M., McGhee, J., Barnett, D., Horton, J.L., Gifford, K., Failla, G., Titt, U., Mourtada, F. “Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations.” International Journal of Radiation Oncology Biology Physics 72:1, 2008.

Kry, S.F., Howell, R.M., Titt, U., Salehpour, M., Mohan, R., Vassiliev, O.N. “Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter-free Clinac.” Medical Physics 35:5, 2008.

Titt, U., Zheng, Y., Vassiliev, O.N., Newhauser, W.D. “Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.” Physics in Medicine and Biology53:2, 2008.

Richert, J.D., Hogstrom, K.R., Fields R. S., Matthews II, K.L., and Boyd, R.A. “Improvement of field matching in segmented-field electron conformal therapy using a variable-SCD applicator.” Physics in Medicine and Biology 52: 2459-2481, 2007.

Kry, S.F., Titt, U., Followill, D., Pönisch, F., Vassiliev, O.N., White, R.A., Stovall, M., Salehpour, M. “A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy.” Medical Physics 34:9, 2007.

Vassiliev, O.N., Kry, S.F., Kuban, D.A., Salehpour, M., Mohan, R., Titt, U. “Treatment-planning study of prostate cancer intensity-modulated radiotherapy with a varian clinac operated without a flattening filter.” International Journal of Radiation Oncology Biology Physics 68:5, 2007.

Kry, S.F., Titt, U., Pönisch, F., Vassiliev, O.N., Salehpour, M., Gillin, M., Mohan, R. “Reduced neutron production through use of a flattening-filter-free accelerator.” International Journal of Radiation Oncology Biology Physics 68:4, 2007.

Vassiliev, O.N., Titt, U., Kry, S.F., Mohan, R., Gillin, M.T. “Radiation safety survey on a flattening filter-free medical accelerator.” Radiation Protection Dosimetry 124:2, 2007.

Cho, S.H., Vassiliev, O.N., Horton, J.L. “Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV.” Radiation and Environment Biophysics 46:1, 2007.

Hogstrom, K.R. “Education and training of medical physicists in America.” Japanese Journal of

Medical Physics 26 (suppl. No. 1): 31-43, 2006.

Hogstrom K.R. and Almond, P.R. “Review of electron beam therapy physics.” Physics in Medicine and

Biology 55: R455-489, 2006.

Matthews II, K.L., Aarsvold, J.N., Mintzer, R.A., Chen, C.T., and Lee, R.C. “Tc-99m Pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat model.” Burns 32:755-764, 2006.

Wang, W-H., J.D. McGlothlin, D.J. Smith, and Matthews II, K.L. “Evaluation of a radiation survey training video developed from a real-time video radiation detection system.” Health Physics 90 (Supplement 1): S33-S39, 2006.

Wang, W-H., Matthews II, K.L., and Scott, L.M. “Lessons learned in responding to and recovering from a fire incident.” Health Physics 91 (Supplement 2): S78-S82, 2006.

Wang, W-H. and Matthews II, K.L. “Simulating gaseous iodine-131 distribution in a silver zeolite cartridge using sodium iodide solution.” Health Physics 90 (Supplement 2): S73-S79, 2006.

Kry, S.F., Titt, U., Pönisch, F., Followill, D., Vassiliev, O.N., White, R.A., Mohan, R., Salehpour, M. “A Monte Carlo model for calculating out-of-field dose from a Varian 6 MV beam.” Medical Physics 33:11, 2006.

Jang, S.Y., Liu, H.H., Wang, X., Vassiliev, O.N., Siebers, J.V., Dong, L., Mohan, R. “Dosimetric verification for intensity-modulated radiotherapy of thoracic cancers using experimental and Monte Carlo approaches.” International Journal of Radiation Oncology Biology Physics 66:3, 2006.

Titt, U., Vassiliev, O.N., Pönisch, F., Kry, S.F., Mohan, R. “Monte Carlo study of backscatter in a flattening filter free clinical accelerator.” Medical Physics 33:9, 2006.

Pönisch, F., Titt, U., Vassiliev, O.N., Kry, S.F., Mohan, R.” Properties of unflattened photon beams shaped by a multileaf collimator.” Medical Physics 33:6, 2006.

Titt, U., Vassiliev, O.N., Pönisch, F., Dong, L., Liu, H., Mohan, R. “A flattening filter free photon treatment concept evaluation with Monte Carlo.” Medical Physics 33:6, 2006.

Vassiliev, O.N., Titt, U., Pönisch, F., Kry, S., Mohan, R., Gillin, M.T. “Dosimetric properties of photon beams from a flattening filter free clinical accelerator.” Physics in Medicine and Biology 51:7, 2006.

Vassiliev, O.N., Titt, U., Kry, S.F., Pönisch, F., Gillin, M.T., Mohan, R. “Monte Carlo study of photon fields from a flattening filter-free clinical accelerator.” Medical Physics 33:4, 2006.

Jang, S.Y., Vassiliev, O.N., Liu, H.H., Mohan, R., Siebers, J.V. “Development and commissioning of a multileaf collimator model in Monte Carlo dose calculations for intensity-modulated radiation therapy.” Medical Physics 33:3, 2006.

Pönisch, F., Titt, U., Kry, S.F., Vassiliev, O.N., Mohan, R. “MCNPX simulation of a multileaf collimator.” Medical Physics 33:2, 2006.

Matsen, M.W., Griffiths, G.H., Wickham, R.A., Vassiliev, O.N. “Monte Carlo phase diagram for diblock copolymer melts.” Journal of Chemical Physics 124:2, 2006.